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Received 27 October 1999, in final form 25 April 2000

Abstract. We present a Lie point symmetry analysis for non-relativistic two-dimensional
charged-particle motion. The resulting symmetries comprise a quasi-invariance transformation,
a time-dependent rotation, a time-dependent spatial translation and a dilation. We also find that
the associated electromagnetic fields must satisfy a system of first-order linear partial differential
equations. This system is solved exactly, yielding four classes of compatible electromagnetic fields.

1. Introduction

Lorentz equations for non-relativistic charged-particle motion constitute a very basic dynamical
system whose symmetry structure is worth a detailed investigation. In a previous paper [1],
we studied the Noether point symmetries for two-dimensional non-relativistic charged-particle
motion. Here we make a systematic search for the Lie symmetries associated with the two-
dimensional non-relativistic motion of a test particle in electromagnetic fields generated by
appropriate charge and current densities. The reason for this study is two-fold. First, in any
given problem, the Lie point symmetry group is more general [2] and contains the Noether point
symmetry group. Second, even though Lie symmetry analysis does not yield first integrals as
directly as Noether’s theorem, it does open up the possibility of a reduction in the number of
variables in the system. Reduction of variables is important for saving computation time in
numerical simulations. For example, in the numerical analysis of the Vlasov–Maxwell system
of collisionless plasma physics [3, 4], a highly desirable feature is a knowledge of the most
general electromagnetic field configuration having Lie symmetry. In our study we consider
the planar non-relativistic motion of a test particle under an initially general electromagnetic
field. The strategy is to choose the field and source configurations later in compliance with the
expected symmetry of the motion. For electromagnetic fields compatible with planar motion,
the Lorentz equations are

ẍ = E1(x, y, t) + ẏB(x, y, t) (1)

ÿ = E2(x, y, t)− ẋB(x, y, t) (2)

where E = (E1(x, y, t), E2(x, y, t), 0) is the planar electric field and B = (0, 0, B(x, y, t))
is the perpendicular magnetic field. Unlike in the usual approach of direct Lie symmetry
analysis of charged-particle motion [5], we do not start with a prescribed electromagnetic
field. Rather, we follow an inverse route and search for the conditions on E and B that imply
the system (1) and (2) does admit a Lie symmetry. With this strategy in mind, we do not focus
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on any particular electromagnetic field but rather search for the most general form that may
produce the symmetry. Once the general forms are known, they can eventually be specified in
more detail to fit some particular application. In fact, electromagnetic fields written in terms of
arbitrary functions are of fundamental importance in treating the Vlasov–Maxwell system in
collisionless plasma physics [3,4]. Certain categories of fields are too simple to serve the needs
of such specific applications. We therefore do not consider, in the following, those choices
implying a too restricted field configuration, such as those being homogeneous in space. This
strategy excludes some of the possible symmetries. Nevertheless, the approach gives very
general electromagnetic fields, containing a substantial number of arbitrary functions. These
functions can be fixed later to fit particular applications, such as those in plasma physics.

In the present case, and for the proposed working strategy, the Lie symmetry approach
produces a system of linear, first-order partial differential equations for the electromagnetic
fields. This system is solved by a procedure similar to that used in [1]. That is, we find the
canonical group coordinates for the various symmetries and express the resulting system of
partial differential equations in these coordinates. As a consequence, the system is transformed
into a set of ordinary differential equations that can be solved easily. This procedure shows
that, in our case, finding classes of electromagnetic fields compatible with Lie symmetry is
equivalent to finding canonical group variables.

This paper is organized as follows. In section 2, we obtain the most general form of the
Lie symmetries associated with planar, non-relativistic charged-particle motion. In the same
section, we obtain the system of equations satisfied by the corresponding electromagnetic fields.
Section 3 is dedicated to the calculation of the canonical group variables for the admissible Lie
symmetries: we find four classes of canonical coordinates. In section 4, the basic system of
partial differential equations satisfied by the electromagnetic fields is solved for each of the four
classes of canonical group variables. In section 5, we discuss the symmetry reduction and the
existence of constants of motion for the planar Lorentz equations possessing Lie symmetries.
Section 6 is devoted to the conclusions.

2. Lie point symmetries

Let us consider infinitesimal point transformations:

x̄ = x + εη1(x, y, t) (3)

ȳ = y + εη2(x, y, t) (4)

t̄ = t + ετ(x, y, t) (5)

where ε is an infinitesimal parameter. As indicated, we consider only point transformations
and consequently, throughout the rest of this paper, Lie point symmetries and Noether point
symmetries are simply referred to as Lie symmetries and Noether symmetries, respectively.
Also for future convenience, we denote the generator of the group of symmetries associated
with (4)–(6) by

G = τ
∂

∂t
+ η1

∂

∂x
+ η2

∂

∂y
. (6)

The generator G appears frequently in what follows and is useful in the definition of
canonical group coordinates, which play a central role in the systematic determination of
the electromagnetic fields associated with the symmetries. In terms of G, the condition for
Lie symmetry is

G[2](N)N=0 = 0 (7)
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where N = (N1, N2),

N1 = ẍ − E1(x, y, t)− ẏB(x, y, t) (8)

N2 = ÿ − E2(x, y, t) + ẋB(x, y, t) (9)

G[2] being the generator of the twice extended group (see, for instance, [6,7]). The calculation
of Lie symmetries is a fairly direct procedure and we only outline its main steps here. By
inserting the equations of motion into the Lie symmetry criterion (7) we obtain a polynomial
equation in the velocity components. Condition (7), being a polynomial form, implies that
the coefficients of all monomials of the form ẋmẏn must be identically zero. This yields a
system of partial differential equations satisfied by τ, η1 and η2. For instance, cubic terms give
a system with a general solution

τ = ρ2(t) + g1(t)x + g2(t)y (10)

where ρ, g1 and g2 are arbitrary functions of time. Equation (10) will be taken into account in
the following.

The terms quadratic in the velocity now yield

η1xx − 2ġ1 + g2B = 0 η1xy − ġ2 − g1B = 0 (11)

η1yy − g2B = 0 η2xx + g1B = 0 (12)

η2xy − ġ1 + g2B = 0 η2yy − 2ġ2 − g1B = 0 (13)

where we have used subscripts to denote partial derivatives. Direct inspection shows that the
choice

g1 = g2 = 0 (14)

leaves B arbitrary and implies that η1 and η2 are linear functions of position:

η1 = g3(t)x + g4(t)y + a1(t) (15)

η2 = g5(t)x + g6(t)y + a2(t) (16)

with g3, g4, g5, g6, a1 and a2 being functions of time only. It is important to stress now
that (14) implies no restriction on the magnetic field, which remains arbitrary. Moreover, a
detailed calculation involving equations (11)–(13) shows that (14) is necessary for keeping
the spatial dependence in the magnetic field. In fact, we are interested in classes of magnetic
fields more general than simply those homogeneous in space. Hence, we adopt (14) and the
corresponding solutions (15) and (16) for η1 and η2. An important point here is that, up to this
stage, we preserved the complete arbitrariness of the magnetic field.

To proceed we notice that the terms linear in velocity yield

(g4 + g5)B = −2(ρρ̈ + ρ̇2) + 2ġ3 (17)

(g4 + g5)B = 2(ρρ̈ + ρ̇2)− 2ġ6 (18)

GB = (g3 − g6 − 2ρρ̇)B + 2ġ4 (19)

GB = (g6 − g3 − 2ρρ̇)B − 2ġ5 (20)

where G is the generator defined in (6).
An examination of equations (17) and (18) shows that to keep the space dependence in

the magnetic field we must choose

g4 = −g5 = −�(t) (21)

where � is a function of time only. Moreover, this implies, from (17) and (18), that

g3 = ρρ̇ + k1 g6 = ρρ̇ + k2 (22)
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with k1 and k2 numerical constants. Equation (22) and compatibility between equations (19)
and (20) give

(k1 − k2)B = 0. (23)

For B not identically zero, the conclusion is

k1 = k2 = k (24)

where k is a numerical constant. Equations (19) and (20) now yield

GB = −2ρρ̇B − 2�̇ (25)

where the generator of Lie symmetries splits into four components:

G = GQ + GR + GT + GS. (26)

In equation (26),

GQ = ρ2(t)
∂

∂t
+ ρρ̇

(
x
∂

∂x
+ y

∂

∂y

)
(27)

is the generator of quasi-invariance transformations [8],

GR = �(t)

(
x
∂

∂y
− y

∂

∂x

)
(28)

generates time-dependent rotations,

GT = a1(t)
∂

∂x
+ a2(t)

∂

∂y
(29)

generates time-dependent spatial translations, and

GS = k

(
x
∂

∂x
+ y

∂

∂y

)
(30)

is the generator of dilations. Comparison with the generator of Noether symmetries for two-
dimensional non-relativistic charged-particle motion [1] shows that the Lie symmetry generator
has an additional term, depending on the parameter k. We also observe that this form is
essentially new and cannot be expressed in terms of the generators GQ, GR and GT .

Finally the velocity-independent terms in the Lie invariance condition yield the equations
for the electric field:

GE1 = (−3ρρ̇ + k)E1 −�E2 − ((ρρ̈ + ρ̇2)y + �̇x + ȧ2)B

+(ρ
...
ρ +3ρ̇ρ̈)x − �̈y + ä1 (31)

GE2 = (−3ρρ̇ + k)E2 + �E1 + ((ρρ̈ + ρ̇2)x − �̇y + ȧ1)B

+(ρ
...
ρ +3ρ̇ρ̈)y + �̈x + ä2. (32)

Let us summarize the results obtained so far. Essentially, in our treatment, we excluded the
excessively restricted class of spatially homogeneous magnetic fields depending only on time.
This approach yields the system of equations (25), (31) and (32) satisfied by the electromagnetic
fields associated with the Lie symmetries of the planar charged-particle motion. The symmetry
generator in equations (25), (31) and (32), which constitute a system of linear, first-order, partial
differential equations for E1, E2 and B, is given by (26). In comparison with the treatment of
two-dimensional non-relativistic charged-particle motion with Noether symmetries, we find
that Lie symmetries have an extra component, corresponding to scale transformation. This
extra contribution modifies both the generator of symmetries and the equations that determine
the electromagnetic fields. Notice that the basic system (25), (31) and (32) involves the
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electromagnetic fields and not the potentials. Thus, as in the case of Noether’s symmetries,
gauge invariance plays no particular role in the procedure.

In the remainder of this paper, we shall be essentially concerned with the solutions
of (25), (31) and (32). These solutions will give the most general electromagnetic field under
which the planar motion of test particles possesses Lie symmetry. It is useful to remark that the
equation satisfied byB is decoupled fromE1 andE2, whereas the equations for the electric field
depend on B. Thus, we must first solve (25) for B and only afterwards tackle (31) and (32) for
the electric field. Finally, if these solutions should constitute true electromagnetic fields, they
must satisfy the homogeneous Maxwell equations. The non-homogeneous Maxwell equations
can always be satisfied for a suitable choice of charge and current densities. Gauss’s law is
trivially verified by the magnetic field (0, 0, B(x, y, t)). Therefore the only requirement left
is Faraday’s law, which implies the extra constraint

E2x − E1y + Bt = 0. (33)

The analysis of the system (25), (31) and (32), and the search for its solutions, are much
more easily performed in canonical group coordinates. These variables are determined in the
section that follows.

3. Canonical group coordinates

Canonical group coordinates [6,7] are defined by stipulating that the symmetry transformation
behaves merely like time translations. This means that, in canonical group coordinates (x̄, ȳ, t̄ ),

G = ∂

∂t̄
(34)

where t̄ is the new time parameter. Canonical group coordinates, therefore, satisfy

Gx̄ = 0 Gȳ = 0 Gt̄ = 1. (35)

This set of uncoupled linear partial differential equations can be solved by the method of
characteristics for the generator (26). We find four classes of solutions, listed in the following
sections.

3.1. The case ρ �= 0

For ρ �= 0, it is convenient to write

a1 = ρ2α̇1 − (ρρ̇ + k)α1 (36)

a2 = ρ2α̇2 − (ρρ̇ + k)α2 (37)

with suitable functions α1(t) and α2(t), which are themselves defined in terms of a1 and a2.
In terms of (36) and (37), we have the following canonical group coordinates:

t̄ =
∫ t

dµ/ρ2(µ) (38)

x̄ = e−kt̄

ρ
((x − α1) cos T + (y − α2) sin T ) + δ1 (39)

ȳ = e−kt̄

ρ
(−(x − α1) sin T + (y − α2) cos T ) + δ2 (40)
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where the new functions T = T (t), δ1 = δ1(t) and δ2 = δ2(t) are defined by

T (t) =
∫ t

dµ�(µ)/ρ2(µ) (41)

δ1(t) = −
∫ t

dµ
�(µ)

ρ3(µ)
e−kt̄(λ)(α1(µ) sin T (µ)− α2(µ) cos T (µ)) (42)

δ2(t) = −
∫ t

dµ
�(µ)

ρ3(µ)
e−kt̄(λ)(α1(µ) cos T (µ) + α2(µ) sin T (µ)). (43)

Note that the requirement ρ �= 0 is essential, for otherwise the canonical group variables (38)–
(40) would not be well defined.

For k = � = α1 = α2 = 0, equations (38)–(40) become a quasi-invariance
transformation [8]. In the general case, however, the transformations also comprise dilation,
a time-dependent rotation and a time-dependent translation. To compare with the Noether
symmetry approach, these canonical group variables are in direct correspondence with case 3.1
of [1]. In fact, when k = 0, formulae (38)–(40) become formulae (42)–(44) of [1].

3.2. The case ρ = k = 0 and � �= 0

In this case, we have only a Noether symmetry in the canonical group variables

t̄ = 1

�
tan−1

(
y − β2

x − β1

)
(44)

x̄ = ((x − β1)
2 + (y − β2)

2)1/2 (45)

ȳ = t (46)

with

β1 = β1(t) = −a2/� β2 = β2(t) = a1/�. (47)

The variables x̄ and t̄ are translated polar coordinates with time playing the role of an azimuthal
angle and x̄ the role of a radial coordinate.

3.3. The case ρ = k = � = 0

Again, we have only Noether symmetry. Written in more symmetrical notation as compared
to that in [1], the canonical group variables are

t̄ = a1x + a2y

a2
1 + a2

2

(48)

x̄ = a2x − a1y (49)

ȳ = t. (50)

Notice that no singularity occurs since the denominator a2
1 +a2

2 �= 0 for non-trivial symmetries.

3.4. The case ρ = 0, k �= 0

In this case the canonical coordinates are

t̄ = 1

2k
log((x − γ1)

2 + (y − γ2)
2) (51)

x̄ = arctan

(
y − γ2

x − γ1

)
−�t̄ (52)

ȳ = t (53)
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where

γ1 = −ka1 + �a2

k2 + �2
γ2 = �a1 − ka2

k2 + �2
. (54)

This symmetry transformation represents a dilation, plus a time-dependent rotation and
translation.

4. Electromagnetic fields

We now consider equations (25), (31) and (32) for the electromagnetic fields for each of the
four possible symmetry transformations, expressed in canonical group variables.

4.1. The case ρ �= 0

Equation (25) becomes, in the canonical group coordinates (38)–(40):

Bt̄ = −2ρ ′

ρ
B − 2�′

ρ2
(55)

where a prime denotes total differentiation with respect to t̄ . The general solution for (55) is

B = −2�

ρ2
+

1

ρ2
B̄(x̄, ȳ) (56)

where B̄(x̄, ȳ) is an arbitrary function of the indicated arguments. Notice that the resulting
magnetic field depends on the spatial coordinates through x̄ and ȳ and, therefore, is in general
non-homogeneous. This is a significant improvement on the earlier known result [9]. Formally,
B is identical to the magnetic field of case 4.1 in [1] on Noether symmetries. The difference
is in the form of canonical group variables.

To find the corresponding electric field, we must solve system (31) and (32) by taking the
solution (56) into account. Here, it is useful to introduce the quantities "1 and "2, defined by

"1 = ρ3e−kt̄ (E1 cos T + E2 sin T ) (57)

"2 = ρ3e−kt̄ (−E1 sin T + E2 cos T ) (58)

representing a rotation and a rescaling of the electric field which, in this case, can be viewed
as a circularly polarized wave with time-dependent amplitude. In these new variables, the
system (31) and (32) decouples and can be cast into

∂"1

∂t̄
= ∂ψ1

∂t̄

∂"2

∂t̄
= ∂ψ2

∂t̄
(59)

where

ψ1 =
(

−ρ ′

ρ
(ȳ − δ2) + δ′

2 + kδ2 −�(x̄ − δ1) +
e−kt̄

ρ
(α′

1 sin T − α′
2 cos T )

)
B̄(x̄, ȳ)

+

(
ρ ′′

ρ
− 2

ρ ′2

ρ2
+ �2

)
(x̄ − δ1)−

(
�′ − 2

ρ ′

ρ
�

)
(ȳ − δ2)

+
e−kt̄

ρ

(
�′α1 −�

(
α′

1 +
ρ ′

ρ
α1

)
+ α′′

2 − 2
ρ ′

ρ
α′

2 + �2α2

)
sin T

+
e−kt̄

ρ

(
−�′α2 + �

(
α′

2 +
ρ ′

ρ
α2

)
+ α′′

1 − 2
ρ ′

ρ
α′

1 + �2α1

)
cos T − k(δ′

1 + kδ1)

(60)
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ψ2 =
(

+
ρ ′

ρ
(x̄ − δ1)− δ′

1 − kδ1 −�(ȳ − δ2) +
e−kt̄

ρ
(α′

1 cos T + α′
2 sin T )

)
B̄(x̄, ȳ)

+

(
ρ ′′

ρ
− 2

ρ ′2

ρ2
+ �2

)
(ȳ − δ2) +

(
�′ − 2

ρ ′

ρ
�

)
(x̄ − δ1)

−e−kt̄

ρ

(
−�′α2 + �

(
α′

2 +
ρ ′

ρ
α2

)
+ α′′

1 − 2
ρ ′

ρ
α′

1 + �2α1

)
sin T

+
e−kt̄

ρ

(
+�′α1 −�

(
α′

1 +
ρ ′

ρ
α1

)
+ α′′

2 − 2
ρ ′

ρ
α′

2 + �2α2

)
cos T − k(δ′

2+kδ2).

(61)

The general solution for (59) is

"1 = ψ1 + Ē1(x̄, ȳ) "2 = ψ2 + Ē2(x̄, ȳ) (62)

where, as indicated, Ē1 and Ē2 do not depend on t̄ .
To obtain the electric field in the original variables we use the inverse of the

transformation (57) and (58):

E1 = ekt̄

ρ3
("1 cos T −"2 sin T ) (63)

E2 = ekt̄

ρ3
("1 sin T + "2 cos T ). (64)

Substitution of equation (62) into (63) and (64), and back-transformation to the original
variables (x, y, t), yields the electric field

E1 = α̈1 +
ρ̈

ρ
(x − α1) +

�2x

ρ4
− (ρ�̇− 2ρ̇�)

y

ρ3
+
�

ρ3
(ρα̇2 − ρ̇α2)

+
k2ekt̄

ρ3
(δ2 sin T − δ1 cos T )− k�α2

ρ4

+
ekt̄

ρ3
(Ē1(x̄, ȳ) cos T − Ē2(x̄, ȳ) sin T )

− 1

ρ4
(ρρ̇(y − α2) + ρ2α̇2 + �x − kρekt̄ (δ2 cos T + δ1 sin T ))B̄(x̄, ȳ) (65)

E2 = α̈2 +
ρ̈

ρ
(y − α2) +

�2y

ρ4
+ (ρ�̇− 2ρ̇�)

x

ρ3
− �

ρ3
(ρα̇1 − ρ̇α1)

−k2ekt̄

ρ3
(δ2 cos T + δ1 sin T ) +

k�α1

ρ4

+
ekt̄

ρ3
(Ē2(x̄, ȳ) cos T + Ē1(x̄, ȳ) sin T )

+
1

ρ4
(ρρ̇(x − α1) + ρ2α̇1 −�y − kρekt̄ (δ1 cos T − δ2 sin T ))B̄(x̄, ȳ). (66)

We still need to consider Faraday’s law, which, in our case, is equivalent to equation (33).
A detailed calculation using the magnetic field (56) and the electric field (65) and (66), reduces
Faraday’s law to

Ē2x̄ − Ē1ȳ = k(x̄B̄x̄ + ȳB̄ȳ ). (67)
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For k = 0 (the Noether symmetry subcase), equation (67) becomes Ē2x̄ − Ē1ȳ = 0 with the
general solution

Ē1 = − ∂

∂x̄
V̄ (x̄, ȳ) Ē2 = − ∂

∂ȳ
V̄ (x̄, ȳ) (68)

where V̄ (x̄, ȳ) is an arbitrary function of the indicated argument. For k = 0, B̄ remains
arbitrary. For k �= 0, equation (67) is a supplementary constraint imposed on the
electromagnetic field. Indeed, for k �= 0, (67) has the general solution

Ē1 = σ1 − ȳ

2
(σ1ȳ − σ2x̄ ) (69)

Ē2 = σ2 +
x̄

2
(σ1ȳ − σ2x̄ ) (70)

B̄ = 1

2k
(σ1ȳ − σ2x̄ ) (71)

where σ1 = σ1(x̄, ȳ) and σ2 = σ2(x̄, ȳ) are arbitrary functions.
In conclusion, we have obtained a very general class of electromagnetic fields yielding Lie

symmetries in the planar Lorenz equation. The magnetic field is given by equation (56) and
the electric field by (65), (66) and condition (67). The electromagnetic field involves several
arbitrary functions, namely ρ(t), α1(t), α2(t),�(t), B̄(x̄, ȳ), Ē1(x̄, ȳ) and Ē2(x̄, ȳ), subjected
to constraint (67). The coordinates x̄ and ȳ are defined by (39) and (40), respectively.

4.2. The case ρ = 0, k = 0 and � �= 0

In this case we also have only Noether symmetry. Hence, we simply quote the main results
from [1]. The electromagnetic field is given by

B = B̄(x̄, ȳ) (72)

E1 = β̈1 − β̇2B̄(x̄, ȳ) + (x − β1)Ē1(x̄, ȳ)− (y − β2)Ē2(x̄, ȳ) (73)

E2 = β̈2 + β̇1B̄(x̄, ȳ) + (x − β1)Ē2(x̄, ȳ) + (y − β2)Ē1(x̄, ȳ) (74)

where B̄, Ē1 and Ē2 are arbitrary functions of x̄ and ȳ given in (45) and (46). Faraday’s law
requires additionally that

x̄Ē2x̄ + 2Ē2 = −B̄ȳ (75)

whose solution is

Ē2 = − 1

x̄2

∂ψ

∂ȳ
B̄ = 1

x̄

∂ψ

∂x̄
(76)

for arbitrary ψ = ψ(x̄, ȳ).
In conclusion, the electromagnetic field is given by (72)–(74) under the additional

constraint (76). There remain four arbitrary functions, namely E1(x̄, ȳ), ψ(x̄, ȳ), β1(t) and
β2(t), with x̄, ȳ defined in (45) and (46). We also note that, in the present case, �(t) has
to be constant in order to produce a physically meaningful electromagnetic field (for details,
see [1]). Without loss of generality, we take � = 1.

4.3. The case ρ = k = � = 0

From [1], written in a more symmetric notation, the electromagnetic fields are

B = B̄(x̄, ȳ) (77)
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E1 =
(
a1x + a2y

a2
1 + a2

2

)
(ä1 − ȧ2B̄(x̄, ȳ)) + Ē1(x̄, ȳ) (78)

E2 =
(
a1x + a2y

a2
1 + a2

2

)
(ä2 + ȧ1B̄(x̄, ȳ)) + Ē2(x̄, ȳ) (79)

where B̄, Ē1 and Ē2 are arbitrary functions and x̄ and ȳ are given in (49), (50).
The solution of the equation resulting from the symmetry condition must again verify the

constraint imposed by Faraday’s law. In this case, the condition implies

B̄ = ψx̄ (80)

Ē1 = − 1

a2
1 + a2

2

((a2x − a1y)(ȧ1ψx̄ + ä2) + a1ψȳ)− V̄x (81)

Ē2 = − 1

a2
1 + a2

2

((a2x − a1y)(ȧ2ψx̄ − ä1) + a2ψȳ)− V̄y . (82)

Here, ψ = ψ(x̄, ȳ) and V̄ = V̄ (x̄, ȳ) are arbitrary functions.
This determines the class of solutions for the electromagnetic field. B is given by (77) and

E1 and E2 are given by (78) and (79). The functions B̄, Ē1 and Ē2 are given by (80)–(82), in
terms of the arbitrary functions ψ(x̄, ȳ) and V̄ (x̄, ȳ), with x̄ and ȳ given by (49) and (50). The
arbitrary functions a1(t) and a2(t) also enter into the definition of the electromagnetic field,
and so four arbitrary functions participate in the final solution.

4.4. The case ρ = 0 and k �= 0

In this case the equation for the magnetic field becomes

Bt̄ = −2�̇(ȳ) (83)

and have the solution

B = −2�̇(ȳ)t̄ + B̄(x̄, ȳ). (84)

Inserting this magnetic field in the equations for the electric field yields

E1t̄ = kE1 −�E2 + (�̇x + ȧ2)(2�̇t̄ − B̄)− �̈y + ä1 (85)

E2t̄ = kE2 + �E1 + (�̇y − ȧ1)(2�̇t̄ − B̄) + �̈x + ä2. (86)

This system may be handled more conveniently in the new variables

"1 = e−kt̄ (E1 cos�t̄ + E2 sin�t̄) (87)

"2 = e−kt̄ (−E1 sin�t̄ + E2 cos�t̄). (88)

In these variables, we have the transformed equations

∂"1

∂t̄
= ∂ψ1

∂t̄

∂"2

∂t̄
= ∂ψ2

∂t̄
(89)

where

ψ1 = (�̇2 t̄2 − �̇B̄t̄) cos x̄ − �̈t̄ sin x̄ + (2�̇γ̇2 t̄ + γ̈1 − γ̇2B̄)e
−kt̄ cos�t̄

+(−2�̇γ̇1 t̄ + γ̈2 + γ̇1B̄)e
−kt̄ sin�t̄ (90)

ψ2 = (�̇2 t̄2 − �̇B̄t̄) sin x̄ + �̈t̄ cos x̄ + (−2�̇γ̇1 t̄ + γ̈2 + γ̇1B̄)e
−kt̄ cos�t̄

−(2�̇γ̇2 t̄ + γ̈1 − γ̇2B̄)e
−kt̄ sin�t̄. (91)

The solutions to (89) are

"1 = ψ1 + Ē1(x̄, ȳ) "2 = ψ2 + Ē2(x̄, ȳ) (92)
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and the inverse transformation for (87) and (88) is

E1 = ekt̄ ("1 cos�t̄ −"2 sin�t̄) (93)

E2 = ekt̄ ("1 sin�t̄ + "2 cos�t̄). (94)

Back in the original coordinates, the resulting electric field becomes

E1 = γ̈1 + 2�̇γ̇2 t̄ − γ̇2B̄ + �̇t̄(�̇t̄ − B̄)(x − γ1)− �̈t̄(y − γ2)

+ekt̄ (Ē1 cos�t̄ − Ē2 sin�t̄) (95)

E2 = γ̈2 − 2�̇γ̇1 t̄ + γ̇1B̄ + �̇t̄(�̇t̄ − B̄)(y − γ2) + �̈t̄(x − γ1)

+ekt̄ (Ē1 sin�t̄ + Ē2 cos�t̄). (96)

In order to obtain simpler expressions, we expressed the results in a more convenient hybrid
notation involving (x, y) and the transformed time t̄ . Notice the generality kept in the
electromagnetic field, which involves six arbitrary functions, namely γ1, γ2, �, B̄, Ē1 and
Ē2.

To finalize, Faraday’s law imposes, in this case

k
∂B̄

∂ȳ
= −�̈(ȳ) + (k sin x̄ −�(ȳ) cos x̄)Ē1 − (k cos x̄ + �(ȳ) sin x̄)Ē2

+(k cos x̄ −�(ȳ) sin x̄)
∂Ē1

∂x̄
+ (k sin x̄ + �(ȳ) cos x̄)

∂Ē2

∂x̄
. (97)

This condition must be satisfied by the arbitrary functions appearing in the solution. For
instance, after specifying �, Ē1 and Ē2, we can view (97) as an equation to determine B̄, up
to the addition of an arbitrary function of x̄.

5. Symmetry reductions and invariants

In this section we study the implications of the Lie symmetries in the Lorentz equations for
the planar motion of a test particle. First, and most important, in terms of canonical group
variables, the equations of motion will not depend explicitly on the time parameter [6, 7].
For the electromagnetic fields discussed in section 4.1, canonical group variables are indeed
convenient, as shown in the following. However, in general, for the electromagnetic fields
treated in this work, the form of the equations of motion in canonical group variables is rather
cumbersome, as the reader may verify. In this case, elimination of the independent variable
comes at a high price and may not be worth the effort.

One very important point in the study of any dynamical system concerns the existence
of invariants (constants of motion or first integrals). In the case of Noether symmetry, on
the one hand, the knowledge of the symmetry generator immediately provides a conserved
quantity. On the other hand, the relation between Lie symmetries and conserved quantities
is more indirect [11]. In our case we tried, without success, the Lie method [6, 7] to find the
constants of motion for the Lorentz equations with electromagnetic fields of the form given
in section 4.4 (corresponding to a non-Noether symmetry). Thus, in this case, it seems that
a more promising approach for finding invariants is the direct method [10]. We apply this
technique in the next sections to discuss the existence of invariants and the integrability of the
planar Lorentz equations with Lie symmetries.

5.1. The case ρ �= 0

Substitute, into the Lorentz equations (1) and (2), the electromagnetic fields specified by (56),
(65) and (66). Writing the equations of motion in the canonical group coordinates introduced
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in section 3.1 yields

x̄ ′′ + 2kx̄ ′ = F1(x̄, ȳ) + ȳ ′B̄(x̄, ȳ) (98)

ȳ ′′ + 2kȳ ′ = F2(x̄, ȳ)− x̄ ′B̄(x̄, ȳ) (99)

where

F1(x̄, ȳ) = E1(x̄, ȳ) + kȳB̄(x̄, ȳ)− k2x̄ (100)

F2(x̄, ȳ) = E2(x̄, ȳ)− kx̄B̄(x̄, ȳ)− k2ȳ (101)

are new arbitrary functions and a prime denotes differentiation with respect to t̄ .
At this point we notice that, in terms of F1 and F2, Faraday’s constraint (67) takes on the

interesting form

2kB̄ = F1ȳ − F2x̄ . (102)

We also notice that (98) and (99) can be viewed as the equations for the planar non-relativistic
motion of a charged particle subjected to an additional friction force proportional to the constant
k. However, for non-zero kB̄ we cannot interpret B̄, F1 and F2 as the components of a static
magnetic and electric field. Actually, for static electromagnetic fields, Faraday’s law imposes
F1ȳ −F2x̄ = 0, which is incompatible with (102) if kB̄ �= 0. We recall that the friction term is
associated with a non-Noether symmetry (k �= 0), a fact that probably hinders the search for
invariants. The equations of motion in canonical group coordinates are indeed autonomous but,
as they stand, they are not integrable in the general case. For integrability, suitable restrictions
must be imposed on the arbitrary functions F1, F2 and B̄. In the following, we will study a
few cases for which (98) and (99) admit an invariant. For the sake of simplicity of notation,
we omit the overbars in the rest of this section.

We start with the simpler case of Noether symmetry. When k = 0, the energy is a first
integral:

I = 1
2 (ẋ

2 + ẏ2) + φ(x, y) (103)

φ(x, y) being the scalar potential, F1 = −φx and F2 = −φy . As expected, the energy
first integral (104) is the Noether invariant derived in [1]. However, knowledge of just one
invariant is not sufficient for complete integrability. In fact, according to the Liouville–
Arnold theorem [12], a Hamiltonian system of two degrees of freedom needs two invariants
in involution for integrability. For electromagnetic fields in general, only in rare situations is
a second constant of motion known. In the literature, Hietarinta [10] and Dorizzi et al [13]
present some cases of static electromagnetic fields for which an additional invariant, besides
energy, is available.

Let us proceed with the non-Noether symmetry and consider k �= 0. In this case, there is
no first integral available a priori. In the Lie method for construction of invariants, we seek
constants of motion in the form of functions that are invariant under the first extended group
of symmetries (for details, see [6,7]). In the present case, this implies searching for invariants
of (98) and (99) not depending on the independent variable. In this case an useful alternative
method for construction of invariants is the direct method [10], which consists of supposing
an invariant of a given prescribed form. In the following, we try the direct method to search
for invariants of (98) and (99). Also, to be consistent with Lie’s method, we consider only
time-independent invariants.

As a starting form we take the following ansatz, linear in velocities, for the invariant

I = f1(x, y)ẋ + f2(x, y)ẏ + f3(x, y) (104)

where fi are functions to be determined. If I is an invariant, then by definition dI/dt = 0.
Under this condition, equations (98) and (99) yield a quadratic polynomial in velocities that
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must be identically zero. Equating to zero the coefficients of different powers of velocities, a
system of partial differential equations results, involvingfi ,B andFi , that may be easily solved.
Here we find two cases for which (98) and (99) admit an invariant linear in the velocities. In
the first case, B and Fi are given by

B = B̃(c2x − c1y) (105)

F1 = −Ṽx(c2x − c1y) +
2kc2

c2
1 + c2

2

(c1x + c2y)B̃(c2x − c1y) (106)

F2 = −Ṽy(c2x − c1y)− 2kc1

c2
1 + c2

2

(c1x + c2y)B̃(c2x − c1y) (107)

where c1 and c2 are arbitrary numerical constants not simultaneously zero, and B̃ and Ṽ are
arbitrary functions depending on c2x − c1y. Faraday’s constraint (102) is already taken into
account in (105)–(107). The corresponding invariant is

I = c1(ẋ + 2kx) + c2(ẏ + 2ky) +
∫ c2x−c1y

dλ B̃(λ). (108)

For the integration of the equations of motion, define

x̃ = c2x − c1y. (109)

Using (98), (99) and (105)–(108), it is not difficult to obtain
¨̃x + 2k ˙̃x = −Ux̃(x̃; I ) (110)

where

U(x̃; I ) = Ṽ (x̃)−
∫ x̃

dλ B̃(λ)

(
I −

∫ λ

dλ′ B̃(λ′)
)
. (111)

Equation (110) is in the form of an equation for the one-dimensional motion of a test particle
subjected to a time-independent potential and a friction force. As is well known [11,14], such
equations can be reduced to an Abel equation of second kind, which is not generically (that
is, for arbitrary U ) integrable. However, for k = 0 (the Noether subcase), equation (110) can
be reduced to a quadrature. Once this quadrature is carried out, giving x̃ as a function of time,
we can easily reconstruct the planar motion (x(t), y(t)) using the invariant (108).

The second case, where (98) and (99) possess an invariant linear in velocities, is given by

B = 4kθ + B̃(r) (112)

F1 = −Ṽx(r) + 2kθ(2kθ + B̃(r))r cos θ (113)

F2 = −Ṽy(r) + 2kθ(2kθ + B̃(r))r sin θ (114)

where B̃ and Ṽ are arbitrary functions of the indicated argument. Also, in (112)–(114) and in
the rest of this section,

r = ((x − c1)
2 + (y − c2)

2)1/2 θ = arctan

(
y − c2

x − c1

)
(115)

c1 and c2 being arbitrary numerical constants. The corresponding invariant is

I = r2(θ̇ + 2kθ) +
∫ r

dλ λB̃(λ). (116)

Notice that B̃ and Fi as given by (112)–(114) are multivalued functions, a fact that makes
its physical interpretation rather difficult. Nevertheless, it is interesting to write the equation
of motion in terms of r , yielding

r̈ + 2kṙ = −Ur(r; I ). (117)
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Here

U(r; I ) = Ṽ (r)−
∫ r dλ

λ3

(
I −

∫ λ

dλ′ λ′B̃(λ′)
)2

−
∫ r

dλ
B̃(λ)

λ

(
I −

∫ λ

dλ′ λ′B̃(λ′)
)
.

(118)

Again, (117) describes a one-dimensional motion under a time-independent potential and a
friction force, reducible to an Abel equation of second kind.

We searched without success for non-trivial invariants quadratic in velocities for (98)
and (99) when k �= 0. The case k = 0 is already treated in the literature (see [10, 13]).

In conclusion, Lorentz equations for planar non-relativistic motion with Lie symmetry
and an invariant linear in velocities are not generically integrable. However, if there is a linear
invariant and also Noether symmetry, the motion is integrable. This is not surprising since, in
this case, two invariants are available (the linear in velocities and the Noether invariant).

5.2. The case ρ = k = 0 and � �= 0

For the electromagnetic fields described in section 4.2, Noether symmetry applies and the
invariant is

I = r2θ̇ + ψ(r, t) (119)

where r = x̄, as given by (45), and

θ = arctan

(
y − β2

x − β1

)
. (120)

The functions β1 and β2 were defined in (47); ψ is given in (76).
Using Ē1 as defined in (73) and (74), we can reduce the equation of motion for the

coordinate r to

r̈ = −Ur(r, t; I ) (121)

where

U(r, t; I ) = 1

2r2
(I − ψ(r, t))2 −

∫ r

dλ λĒ1(λ, t). (122)

Equation (121) describes the one-dimensional motion of a particle under a time-dependent
potential. Again, integrability is an exception, and a second invariant must be found. Noether
symmetry at least reduces the whole dynamics to the resolution of (121), for which some results
are already available. Indeed, the search for invariants for one-dimensional motion under time-
dependent potentials has been the subject of intensive research in recent years [11, 15, 16].
Whenever r as a function of time can be found from (122), we may obtain θ as a function of
time from the Noether invariant (119).

5.3. The case ρ = k = � = 0

Proceeding with the notation used in section 4.3, here again we have only a Noether invariant:

I = a1ẋ + a2ẏ − ȧ1x − ȧ2y + ψ(a2x − a1y, t). (123)

Using

s = a2x − a1y√
a2

1 + a2
2

(124)
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we get

s̈ = −Us(s, t; I ). (125)

Here we give up writing explicitly the complicated form of U(s, t; I ). The important point is
that, as in section 5.2, we have the equivalent of a one-dimensional motion of a particle under
a time-dependent potential. A second invariant is still needed for complete integrability.

5.4. The case ρ = 0, k �= 0

For ρ = 0, k �= 0 we have no Noether symmetry and no associated Noether invariant.
Nevertheless, we can obtain invariants for particular electromagnetic fields in the general class
determined in section 4.4. For instance, we can obtain an invariant linear in the velocities.
According to (84), (95) and (96), the electromagnetic fields of section 4.4 depend on the
arbitrary functions B̄, Ē1 and Ē2. With the canonical group variables defined in section 3.4,
we obtain, after some simple calculations, that, for an invariant linear in the velocity to exist,
necessarily

B̄ = B̃(ȳ) (126)

Ē1 = Ẽ(ȳ) cos x̄ +
1

2

(
˙̃
B +

�̈

k

)
sin x̄ (127)

Ē2 = Ẽ(ȳ) sin x̄ − 1

2

(
˙̃
B +

�̈

k

)
cos x̄ (128)

where B̃ and Ẽ are arbitrary functions of ȳ = t . Faraday’s constraint (97) is already taken into
account in (126)–(128).

The functions B̄(x̄, ȳ), Ē1(x̄, ȳ) and Ē1(x̄, ȳ), satisfying equations (126)–(128), are the
only functions that produce an invariant linear in the velocity for Lorentz equations with the
given symmetry. Using

r = ((x − γ1)
2 + (y − γ2)

2)1/2 θ = arctan

(
y − γ2

x − γ1

)
(129)

where γ1 and γ2 are given in (97), the associated invariant becomes

I = r2θ̇ +
1

2
r2

(
B̃(t) +

�̇

k

)
− �̇

k
r2 log r. (130)

Using the invariant given by (130) we obtain

r̈ = −Ur(r, t; I ) (131)

for the time-dependent potential,

U(r, t; I ) = ω2(t)r2

2
+
I 2

2r2
+
I�̇

k
log r (132)

where we have defined

ω2(t) = 1

4

(
B̃2(t)− �̇2

k2
− 4Ẽ(t)

)
. (133)

Explicitly, the equation for r is

r̈ + ω2(t)r = I 2

r3
− I�̇

kr
. (134)

If either I = 0 or �̇ = 0, then (134) is Pinney’s [17] equation.
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For arbitrary ω, � and B̃, we have not succeeded either at obtaining a second invariant
for equation (134) or at finding quadratic invariants for the Lorentz equations with the
electromagnetic fields given in section 4.4. However, if

I�̇ = c

ρ2
(135)

where c is a numerical constant and ρ = ρ(t) is a function satisfying

ρ̈ + ω2(t)ρ = 0 (136)

then there is a second invariant J given by

J = 1

2
(ρṙ − ρ̇r)2 +

I 2

2

(ρ
r

)2
+
c

k
log

(
r

ρ

)
. (137)

The corresponding equation of motion is

r̈ + ω2(t)r = I 2

r3
− c�

kρ2r
. (138)

In general, (132) with the restriction (135) is an example of time-dependent potential admitting
an invariant quadratic in the velocity [15]. When c = 0, equations (136)–(138) are a particular
example of the Ermakov system [18–20]. Also, when c = 0, J as given by (137) is the Ermakov
invariant of the system. Finally, it is possible to reduce the problem to quadratures using the
invariants (130) and (137). However, the quadratures cannot be performed analytically.

6. Conclusion

We have found classes of electromagnetic fields for which the planar motion of a non-relativistic
test particle is compatible with Lie symmetries. Our procedure was based on the resolution of
the basic system of linear first-order partial differential equations (25), (31) and (32) satisfied
by the electromagnetic field, using canonical group variables. As shown in section 2, there
exist four types of canonical group variables, yielding four classes of electromagnetic fields
compatible with Lie symmetry. In comparison with the Noether symmetry analysis [1], an
additional dilation invariance term appears in the generator of the symmetries. The dilation
invariance is associated with an extra category of electromagnetic field, compatible with Lie
symmetries. The electromagnetic fields of sections 4.2 and 4.3 fall into the Noether symmetry
framework. The electromagnetic field of section 4.1 can be viewed as a natural extension of
the Noether symmetry case treated in section 4.1 of [1]. The class shown in section 4.4 of
this paper, however, is essentially new. Its origin can be traced back to the additional dilation
invariance, which is not possible in the Noether’s theorem framework.

In our treatment, we do not include some symmetries corresponding to the excessively
particular classes of electromagnetic fields homogeneous in space. By this, we concentrate
on classes of electromagnetic fields depending on arbitrary functions of certain similarity
variables involving space coordinates. These classes may be useful, for example, in the search
for new exact or approximate solutions for the Vlasov–Maxwell system in collisionless plasma
physics. Also, as pointed out in the introduction, symmetry may help in reducing the number
of relevant coordinates of the problem and this may represent a considerable reduction in the
cost of its numerical treatment.

Finally we analysed the resulting equations of motion to check for the possible existence of
first integral and integrability. Unfortunately, and despite the autonomization of the equations
of motion in canonical group variables, in general the method does not provide enough
constants of motion to guarantee their integrability. In some cases, constants of motion could
be constructed by use of the direct method.
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Rio Grande do Sul (FAPERGS) and by Conselho Nacional de Desenvolvimento Cientı́fico e
Tecnológico (CNPq). One of us (JG) also acknowledges the Instituto de Fı́sica da UFRGS for
providing free access to its facilities during part of this work.

References

[1] Haas F and Goedert J 1999 J. Phys. A: Math. Gen. 32 6837
[2] Sarlet W and Cantrijn F 1981 SIAM Rev. 23 467
[3] Lewis H R and Symon K R 1984 Phys. Fluids 27 192
[4] Abraham-Schrauner B 1984 Phys. Fluids 27 197
[5] Ritter O M 1991 Simetrias de Lie para a partı́cula carregada sob campos eletromagnéticos gerais MsC Thesis

UFRJ
[6] Bluman G W and Cole J D 1974 Similarity Methods for Differential Equations (Berlin: Springer)
[7] Leach P G L 1996 Differential Equations, Symmetries and Integrability (Lecture Notes) (Université d’Orléans)
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